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Resolving transient time profile in ToF imaging via
log-sum sparse regularization
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Multi-frequency time-of-flight (ToF) cameras have been used to recover the transient time profiles of optical re-
sponses such that multipath interference can be separated. The resolution of the recovered time profiles is limited
by the highest modulation frequency. Here, we demonstrate a method based on log-sum sparsity regularization to
recover transient time profiles of specular reflections. We show that it improves the ability of separating pulses
better than the state-of-the-art regularization methods. As an application, we demonstrate the encoding and decod-

ing of hidden images using mirror reflections.
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An amplitude modulated continuous wave (AMCW) time-
of-flight (ToF) imager offers the range information and
shape profile of a scene by emitting a modulated light
signal and measuring the phase shift of the light reflected
back onto the sensor. A common challenge to such
systems is multipath interference (MPI), where light
reflected by multiple surfaces superimposes on a single
detector and causes a false depth estimate [1]. The tem-
poral structure of backscattered light depends on the
geometry and reflectance of the scene: specular, smooth
surfaces (like windows or hardwood floors) typically
produce a sparse response (“specular MPI”), and diffuse
surfaces produce a dense response (“diffuse MPI”). As a
third common source of multipath mixing, pixels that fall
onto depth discontinuities sample a varying mixture of
foreground and background that is sparse both tempo-
rally and spatially (“flying pixels”).

While in traditional ToF imaging, the amplitude and
phase of the reflected signal can in principle be recov-
ered from 2 measurements per pixel, multipath scattering
introduces more unknowns and hence requires more
measurements, as previous works have shown [2,3].
The most general case is the recovery of a full transient
optical response «a(?) per pixel, which is related to AMCW
measurements through a linear relation [4] and can be
expressed by a Fourier transform [5]. However, the res-
olution of the recovered time profile is dependent on the
highest modulation frequency. To constrain the solution
space of such linear inverse problems to a temporally
sparse response, sparsity priors have been used, such
as ;- [6] or £y- [7] norm regularizers. The development
of application-specific priors in ToF and transient imag-
ing is the subject of ongoing research, as shown, e.g., by
Heide et al. [8], who used an exponentially modified
Gaussian basis to sparsely represent even backscatter
profiles that are dense in time domain.

In the case of specular MP], it is reasonable to use spar-
sity assumption and employ ¢, regularization, which
means finding out the solution that has minimal number
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of nonzero values. However, a problem with £, regulari-
zation is NP-hard [9], i.e., the exact solution to such
sparse optimization requires an intractable combinatorial
search. A common approach that makes such problem
tractable is to minimize its convex envelope using an
¢1 norm as a proxy for £, norm. However, there exists
a difference between the combinatorial problem and
its relaxation, namely, the dependence on magnitude:
larger coefficients are penalized more heavily in the 7,
norm than smaller coefficients, unlike the more demo-
cratic penalization of the £, norm.

In this work, we propose to use log-sum sparse regu-
larization (LSR) to address this imbalance in the recovery
of time profile of specular MPI (a very common problem
in video gaming, the largest ToF market [6]) from multi-
frequency and multi-phase measurements. Figure 1 illus-
trates typical scene geometry and the associated time
profile of specular MPI. We show that LSR greatly im-
proves the temporal resolution for trails of pulses, and
we demonstrate that MPI can be exploited to decompose
hidden images encoded through specular reflections.

The ToF camera used in this work contains a set of
laser diodes as light source and a photonic mixer device
(PMD) as a ToF sensor, as shown in Fig. 1(a) [5]. The
system works under a homodyne setting, where the
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Fig. 1. (a) Working principle of the ToF camera. (b) Time pro-

file of the received signal in specular case, comprising multiple
pulses.
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output of the light source f;(wt) and the zero-mean refer-
ence signal f (wt+ ¢) of the sensor share the same
modulation frequency and a fixed relative phase ¢. Light
propagates through the scene to the object point and
then bounces back to the sensor pixel via multiple paths.
Each single light path q experiences an attenuation factor
a(q), and its total optical length corresponds to a delay
1(q) = 7. The transient response of a pixel a(z) can thus
be expressed as an integral over all paths that contribute
to the irradiance on that pixel:

a(e) = / . at@ds 6

At the sensor, the incident light signal f,.(wt) is

So(wt) = Ey + L T a@f @t -d. @)

where F, is the ambient illumination.

The PMD sensor demodulates the received light signal
fr(wt) with the reference signal f (ot + ¢) and integrates
over an exposure time of NT, where N is an integer and
T = 2z /w. Thus the sensor measurement is

'NT
H(o.$) = A £t (ot + ). 3)

Note that E| is dropped due to f; being zero-mean.
Substituting Eq. (2) into Eq. (3), we have [4]

H(w,$) = L * a(0)c(w, ¢, 7)dr, )

where

def NT
clw, o) A fo— D@t +hdt )

is the correlation function between f;(wt) and f(wt),
which is a system function independent of the scene
and is pre-calibrated using the method proposed in [5].

The forward formation model (4) can be discretized
and written in the compact form as follows:

h = Ci, ()

where h is a vector composed of M ToF measurements
H(w,¢) under different modulation frequencies and
phase values, i = [a(v),a(2v), ...,a(Lv)]" is the discre-
tized transient time profile at a pixel with an ultrashort
time interval v and L samples, which cover the travel time
along all the paths, and C is a M x L correlation matrix
sampling from the calibrated continuous correlation
function c(w, ¢, 7).

In the case of specular MPI, the time profile is com-
posed of delta functions, thus its frequency spectrum
is band infinite. However, the bandwidth of the camera
modulation frequencies is limited due to hardware con-
straints, and therefore the Eq. (6) is ill-conditioned [5].
Thus a regularization term has to be introduced. As men-
tioned above, ¢, regularization is intractable, so we adopt
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nonconvex penalties in sparse signal recovery designed
to more democratically penalize nonzero coefficients.
Two nonconvex terms, 7, norm (0 <p <1) and log-
sum, are widely used, and by taking the limit p — 0"
in £)-norm regularization, we get the log-sum model
[10]. It is known that when p > 0, the closer p approaches
to zero, the stronger sparse enhancement that #)-based
optimization exhibits. We also comment here that when p
equals zero, the 7, norm exactly corresponds to the
intractable discrete Zjy-norm problem. Therefore, log-
sum exploits the limit of the £, norm in the objective
and is regarded to have more powerful sparsity enhance-
ment capability than general £, norm.

The inverse problem of (6) with log-sum regularization
is as follows:

min [[i]

st.th=Ci and i>0, )
where |[|i||;; is the log-sum regularization defined as
llillis = > xlog(|éx| + ), 5§ >0 is a small regularization
constant. This optimization problem with constraints
can be formulated as the problem without constraints

min|[h - Cill3 + Allills. ®)
i>0

where || * || denotes the 5 norm, and A is a positive
weight balancing the data error and the sparsity. Equa-
tion (8) shows that we seek to minimize an objective
function with the constraint that the number of nonzero
entries is as small as possible in order to recover the tran-
sient time profile. Due to the sparsity of the transient time
profile in the time domain, the optimization is robust. We
can resolve MPI into its components from the nonzero
values in i. Here, we solve Eq. 8 via a majorization-
minimization (MM)-type algorithm mentioned in [11,12].

For the comparison of #; and log-sum regularization,
consider a simple example where

2 11
’ C:[llz]'

We wish to recover the sparse i, from h=
Cip =[1 1]”. The #,-norm regularization [6] finds an in-
correct solution of i* =[1 0 1|7 #i,, i.e., the optimal
solution to the inverse problem with #; regularization is
not the answer in this case. In contrast, our log-sum regu-
larization finds the correct solution i* = iy.

We quantitatively evaluate the performance of our
method using synthetic data with the range of modula-
tion frequency from 10 to 120 MHz in a step of 1 MHz
and the temporal step v = 0.01 ns (about 3 mm). The first
synthetic data set is noiseless. Figure 2(a) shows the
ground truth transient time profile that consists of three
pulses at delay times of 3, 5, and 7 ns with amplitudes of
3, 2, and 1, respectively. This transient model represents
a three-path MPI which is common in natural scenes. We
generate the acquired measurements h from Eq. (6) with
a calibrated correlation matrix from [5]. Figures 2(b)-2(f)
present the recovered time profile by our LSR method,
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Fig. 2. Decomposition results on noiseless synthetic data.
(a) The ground truth of three-path MPIL (b) Decomposition re-
sult of LSR. (c) Decomposition result of Bhandari et al.’s model
[7]. (£p-norm regularization with 3-sparse knowledge). (d) De-
composition result of Freedman ef al.’s model [6]. (£;-norm
regularization). (e) Decomposition result of Lin et al.’s model
[5]. (f) Decomposition result of Heide et al.’s model [4].

Bhandari et al.’s method (¢ regularization with 3-sparse
knowledge) [7], Freedman et al.’s method (¢, regulariza-
tion) [6], Lin ef al.’s method [5], and Heide et al.’s method
[4], respectively. Compared to the other multi-frequency
methods, our LSR method resolves the transient time
profile most accurately without the knowledge of the
number of nonzero components.

The second synthetic data set is a two-path MPI with
Gaussian noise, as shown in Fig. 3(a), used to verify the
robustness and the temporal resolution of our method. It
is more challenging for transient reconstruction methods
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Fig. 3. Simulation of two-path MPI in the presence of noise.
(a) The error between the ground truth and the recovered time
profile caused by noise. There are two types of error, namely
flight time error and intensity error (|| *||; denotes the 7,
norm). There is an example of ground truth with the condition
of 1 ns lag and 0.8 intensity ratio. (b) and (c¢) RMSE of the flight
time and RMSE of the intensity with our method. Run 20 times
at each situation.

to recover the amplitudes and the lag times of pulses in
time profiles from noisy data. In this data set, we set the
lag between the two-path flight times from 0.5 to 10 ns
with a step of 0.5 ns (corresponding to 15 cm in space)
and the intensity ratio from 0.05 to 1 with a step of 0.05,
and generate 400 groups of data in total. Gaussian noise
N(0,0.005%) is added to each element of the measure-
ments h. The root-mean-squared errors (RMSEs) of the
recovered time profiles by our LSR method are illustrated
in Figs. 3(b) and 3(c). The results show that, when the lag
is too small, the two pulses can not be separated accu-
rately due to the limited resolution of the algorithm;
when the lag is greater than 3 ns, RMSE goes down
quickly, and our LSR method recovers the time profile
accurately. Since the lag may be 5 ns or more in the real
world, the reconstruction error is almost zero. Compari-
son between our LSR method and other reconstruction
methods is shown in Fig. 4. The left column illustrates
RMSE versus intensity ratio and the right column illus-
trates RMSE versus lag. Our LSR method yields the least
RMSE among these methods. When the intensity differ-
ence is wide and the lag is small, it is difficult for all the
methods to separate the two pulses. When the intensity
ratio is greater than 0.25 and the lag is greater than 3 ns,
the RMSE of our LSR method is trivial.

To verify our LSR method in real scenes, we conduct
an experiment with the setup shown in Figs. 5(a)
and 5(b). This experiment is also applied to show that
we can discover useful information hidden in the scene
by MPL The system is based on a PMD PhotonICs 19 k-S3
160 x 120 sensor array in combination with a bank of
three 650-nm laser diodes. Two sinusoidal outputs from
an Analog Devices AD9958 function generator chip are
converted to a digital square wave and used to drive light
source and sensor at frequencies up to 180 MHz [4,5,13].
In this experiment, the modulation frequency is set from
5 to 1656 MHz in a step of 1 MHz. The two mirrors intro-
duce MPI into the measurements. The amplitude map
and the depth map, shown in Figs. 5(c) and 5(d), corre-
spond to the maximal amplitude and its time of the recov-
ered transient time profile, respectively. MPI introduced
by the mirrors makes the scene lit twice in an ultrashort
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Fig. 4. Comparison of transient time profile reconstruction
methods. Run 20 times at each situation.
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Fig. 5. Reconstructed transient image of the real scene. (a) The experimental setup. (b) The letters “THU.” (¢) Amplitude map.
(d) Depth map. (e) First reflection of the transient image recovered by our LSR method. (f) Second reflections of the recovered

transient images. (g) Recovered time profiles at point 1.

time interval, which cannot be sensed by a traditional
camera. Thus the letters “THU” sticking on the mirror
II, shown in Fig. 5(b), cannot be seen in the amplitude
map and the depth map from the position of the camera.
When the whole time profile of the optical response is
recovered, the information hidden in the second pulse,
i.e., the letter on mirror II, can be obtained, as shown in
Fig. 5(f). For better comparison, the recovered time pro-
files of point 1 are shown in Fig. 5(g). Our LSR method
detects the number of pulses automatically and decom-
poses them correctly, whereas Bhandari et al.’s method
[7] requires the knowledge of the number of pulses, and
Freedman et al.’s method [6] failed to resolve correct
number of pulses. Moreover, in Fig. 5(f), the letters are
recovered properly by our LSR method, while artifacts
exist in that recovered by Bhandari et al.’s method due
to intensity error.

In conclusion, we exploit a multi-frequency approach
for decomposing specular MPI into its components using
log-sum sparse regularization. LSR takes advantage of
the strong sparse enhancement introduced by the log-
sum term and greatly improves the temporal resolution
for resolving MPI. Our LSR method is robust to measure-
ment noise and does not require prior information about
the number of pulses. LSR has been experimentally va-
lidated on both synthetic and real data, and the results
demonstrate its superior performance. Future work in-
cludes further improvement of the computation time
and the temporal resolution.
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